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1. Introduction,

If x is the position vector of an artificlal satellite of an
oblate planet, relative to the latter's center of mass, the drag-free

motion of the satellite is determined by the differential equation

r=-Vv (1)
Here the gravitational potentisl V of the planet is expressible as an ~
expansion in spherical harmonics 3

<) by
V=~ H [L- & ( —‘3)’:1 J P (sing)] + tesseral harmonics (2)
T aep T nn

where r = |r|, 6 is the declination, r_  1is the equatorial radius, P

is the n'th Legendre polynomial, and K = GM, the product of the grav-
itational constant and the mass of the planet. Besides the drag, Egs.
(1) and (2) neglect the lunar-solar perturbation and all non-gravita-

tional forces. The constants Jn are pure numbers characterizing the
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planet's potential, with J, = (1.08)10"3 for the Earth snd with all

the other J 's of the order 10-6 or smaller.

2. Possible Reference Orbits.

Most approaches to the problem of solving (1) and (2) for the orbit
have begun with replacing V by V_ = -u/r end finding the perturba-
tions of the resulting elliptic orbit, produced by the higher harmonics.
Sterne(1957,1958) and Garfinkel(195851959) both began with potentials
of the form V = £(r,8), taking into account part of the effect of the
second harmonic. Further progress then depends on finding how the result-

ing intermediate or reference orbit changes with time.

To take advantage of our knowledge of the actual shape of the earth,
or of any oblate planet more closely resembling an oblate spheroid than
a sphere, the author (Vinti 1959a, 1959b) decided to try oblate spheroidal
coordinates. If X, Y, and Z are the usual rectangular coordinates, these
spheroidal coordinates p, 7), and $ are defined by the equations

2 2 2,3
X + 1Y = rcos@expig = [(p7+c")(1-1") Pexpi ¢ (3.1)

b
il

rsind = pn (3.2)

Here ¢ is an adjustable distance, small compared to To* For large T,
p-x and 7) - sinf. The surfaces p = constant are oblate spheroids,

approaching sphericity as p increases, and the "surfaces‘ 'n = constant




are hyperboloids, asymptotic to the cones § = constant.

With the hope of obtaining a more accurate reference orbit as a
starting point for the calculation of satellite orbits, the author
wrote out the Hamllton-Jacobi equation in these coordinates, finding

that it would be separable if V has the general form

Vo= (p%+ cPrR) L 2(p) + eln)] (%)

On imposing the requirement that V' shall be a solution of Laplace's
equation V2 V' = O and that this solution shall be non-singular on

the Z-axis, one finds that the functions f£(p) and g(7) can only be

£(p) = byp g(n) = bn (5)

Placing the origin at the center of mass then makes b, = 0 and requir-

2
ing V' to have the form -p/r at large r makes b, = -y . Then

v =- -5222—2- = -uRe(p + o)™t (6)
P +C n ;

The expansion of V' in zonal harmonics

2 L 6
V'= - &1 - S p (sing)+ S Py (sing) - i-g Pg(sing) + ...7 ()
r by
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then shows that V' agrees with V through the second harmonic if
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With such a cholce for ¢, we also find that Jl& = -Jg, J6= J'g, cee

Since observations show that Jj ~ -1.5 J5, it follows that V' also
represents about two-thirds of the fourth harmonic. It follows that
V' accounts for about 99.5% of the departure of V from the simple
value -[J./ r that would hold for a spherically symmetric planet. In
other words the geold constructed i{é;t: V' never departs from the
actual sea-level surface by more than a few hundred feet. Further-
more, Weinacht(1924) proved that t;a% 'm.;)’t:o}i‘: of a particle in Euclid-
ean space 1s either a Staeckel system or reducible to & Staeckel
system by a polint transformation. Of the eleven systems of coor-
dinates in which Staeckel systems may be expressed, the oblate spheroci-
dal has the most appropriate symmetry. Furthermore, Eq.(6) is the
most flexible solution of Laplace's equation in this system that leads
to separability. It therefore appears likely that the orbit of a

2

particle moving in the potential field (6), with c¢“ = ri Jys 1is the

best possible reference orbit that can be chosen, from the point of

view of accuracy of fit to the actual orbit without perturbation theory:

3. The Quadratures

If 0y is the energy, a3 the axial component of angular momentum,

and o, & separation constant that would reduce to the total angular
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momentum in the Keplerian case c= O, then with the potential (6) the

Hamilton-Jacobl equation separates, with a solution

W= Wl(P’al’oé’O%) + Wz(n:al:%y%) + O(3¢ (9)

If ,Bl, ,32, and ,33 are constants, such that in the Keplerian case -8,
would be the time of passage through perigee, /32 the argument of perigee,

and /33 the right ascension of the node, the coordinates p, 7, and ¢ are

given by
P 1 n
W sep - [ PPF sl [ fotan (10.1)
e o
Py
P 1 n 1
%2—=32=I%JF2dpi%J'G2dn (10.2)
Py o
(10.3)

U] 1 p '.L

W 2-1 -’ 2 . 22"'1-

h__=,33=¢$a3j‘(1-n) G2an = ¢y [ (p%+e") T Flap
o]

3 oy

Here

2 2
&(m)= -o§ +(1-1) (cGreon r )=(a5-o5) (1- T fig (-ny sNg M5
° (11.1)
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and I = sin Mo * The quantities al,a2,a3, A,B, and M, can all be

a quadratic in 'n2, and

)

Fp) = c2a§ + (p2+c2)(-oz§+ 2upt 2a1p2)=(-2a1)(P-Pl)(pz-p)(p2+Ap+B),(Pl SPsP)

a quartic in p . (11.2)

4.  Factoring the Quartics [For references on Sects. 4,5, and 6, see
Vinti 1961b, 196le, and 1962 ]

Finding the coordinastes as functions of the time depends on invert-

ing Eqs.(10.1) and (10.2) to obtain pand 7 in terms of t and then

inserting the results into (10.3) to obtain ¢ . To do this we must
first evaluate the above integrals and this evaluation requires factor-
ing the quartics F(p) and G(7m).

1
z

2,2
We may define constant orbital elements a = -/ 20, e os(l+2alaz/ T

J>

. -1
and 1 = cos (a3/a2), B)sB,,B; that can be obtained directly from initial
conditions. In this way we can factor G(7) exactly and F(p) through order

J‘Z without difficulty. A somewhat better set of elements is a,e ,I,ﬁl,

Bys B, introduced by Izsak (1960). Here a= (P +p,), e= (py-pp)/(Pst0y)s

expressed in terms of these elements, so that the latter lead to an exact
factorization of F(p). These elements can be obtained from initial condi-
tions by mumerical solution of F(p) = 0, but they can be determined with-

out such a procedure by iterated least-square fitting to an observed orbit.




5. Eveluating the Integrals

The integrals in (10.3) can be expressed as incomplete elliptic
integrals of the third kind and those in (10.l1l) and (10.2) as in-
complete elliptic integrals of the first and second kinds. It is
simpler, however, to avoid such a formulation. Suppose we introduce
the uniformizing variables E, v, ¥, and X, defined by

p = a(l-ecosE) = a(l-e2)(1 + ecosy) ™+ (12.1)

n

expiX = (l-'r)i sinelb)-%(coszl) + 1V l-rﬁ sing)

nosinl!) (12.2)

(12.3)

Here E and v are analogous, respectively, to the eccentric and true
anomalies in elliptic motion, { to the argument of latitude, and ¥
to the projection of the orbital arc on the equator. By using an

1
expansion in Iegendre polynomials with argument --é— AB 2 s viz.,

o= o , L _1n 1 o=r ‘
(L+Ap+B/P)2=3 (Bp ) P(-}4872), (13)
n=0
we can express the p-integrals Rl, R2, R3, occurring respectively
in (10.1), (10.2), and (10.3), in the forms
by 2
2

= -1 AE + a(B-esinE)+ Ay + £ A, sinjy (14.1)
R = -2 2 A

(-201)
E J




(-2011)% R, =Ajv+ él Az,j sinjv (1%.2)

1
(-2a1)2 R3 = A3v + 3§1 A3 3 sinjv (14.3)

Here the coefficlents ATL’ A2, and A, are infinite series, leading to

3
an exact evaluation of secular effects for the reference orbit, and
the sine terms are carried far enough to glve periodic effects through

order J‘g .

We can express the corresponding 7 integrals as

2

N, = Cqp+ 351 c, p sin2jy (15.1)
N, = Cyd + :El c, 3 sin23yP (15.2)
Ny = CX+ Qb+ C sin2) (15.3)

Hexre Cl and C2 are expressible in terms of the complete elliptic
integrals K('na/na) and E(n o/1,2) and N in temms of an infinite series.
The results for the 7 integrals are thus also accurate enough to give
secular effects exactly for the reference orbit and periodic effects

through order Jg )
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6. Solution of the Kinetic Equations (10)

One then inserts (14) and (15) into Egs. (10.1) and (10.2), plac-

ing
E=MS+Ep v =M * v, xp=¢s+¢p (16)

The secular terms Ms and z,bs are then found by dropping Ep » Vs l,bp
and the sine terms in (10.1) and (10.2) and solving a pair of linear
algebraic equations. The secular mean anomaly Ms appears as the prod-
uct of 2my; and a linear function of t + B, ; the secular term by 1s
the product of 2171/2 and a linear function of ¢t + ,32. Here v, and v,
are, respectively, the mean p-frequency aoa_/ a,jl and the mean 7~frequency

8041/ 3,5 4y and 3, being the corresponding action varisbles(Vinti 1961a).

One then expresses the periodic terms as

EP=E +E. +E vp=vo+vl+v2 lbp=lbo+¢\l+2, (17)

where En’ e.g., denotes a periodic part of order J’g. One then places

E =Ey, v, =Yy z,b‘1 = §, inmto (10), rejecting all periodic terms of

P 0’ "p
order J, or higher,and solves (10.1), (10.2),8nd (12.1) for Ey; Vyr and
zbo. Here Ms + EO appears as the solution of the Kepler equation
- L § = .
M_+ Ey - e sin(Ms + EO) M, (18.1)

aefs, < e (18.2)




«1Q=

One continues by adding in the terms El’

rejecting only those periodic terms of order Jg or higher. Then

Ms + EO + El satisfies a similar Kepler equation, the right side

v, end {bl into Egs.(10),

getting an additional temm Ml’ periodic of order J‘2, depending on
Vo and ¢s + ;bo. This second Kepler equation does not require a full-
fledged solution, but may be solved by a differential method. KXnow-

ing E,, one may then use (12.1) to find v, and (10.2) to find :'bl

One continues in a similar fashion to £find E and 4)2. For

2’ V2,
the reference orbit the secular parts of E, v, and ¥ are then known
exactly and the short-periodic parts through order Jg There are no

long-periodic texrms in this solution for the reference orbit.

Egs. (12.1) and (12.2) then give the spheroidal coordinates P
and 7). The right ascension ¢ follows from (10.3), (14.3), and (15.3),
after insertion of ¥ into (12.3) to find X. This completes the solu-

tion for the reference orbit.

T. A Sketch of the Necessary Perturbation Theory

If we subtract (7) from (2), we find that the part of the gravita-

tional potential not accounted for in the reference orbit is given by _

3

Hr

n
V-V = 'T IR (s;ma*;+ . 2 (5,40 P, (s1n9) + ... (19)




As an example, we consider here only the residual fourth harmonie, so

that the perturbing term in the Hamiltonian becomes

' "
H' = --;% (Jh + Jg) Pu(sine)' ' (20)

If we use the formulas of elliptic motion for r and 6, viz.,

2

r = a(l-ecosE) = %ﬁ}_-—e—)- (21)
ecosv

8inf = sinIsin(v + /32) (22)

the perturbation H' will be correct through order J‘g This order of
accuracy will result in secular and short-periodic changes correct
through order J’g and long-periodic terms correct through order Jye (Tt
is well to emphasize at thils point that this order of accuracy is for
effects produced by less than 0.5% of the departure of the planet form
sphericity; for the 99.5% of this departure already accounted for by

the potential (7) the secular effects are exact and long~-periodic effects

do not exist.)

In doing the perturbation theory, the first canonical variables -
that come to mind are the Jacobi "constants” o, &, O%, ’31’ 8., and 133.
Thelr shortcomings are well known, however, since they lead to Poisson

terms in oy and o, . The next set that comes to mind is the one gen-



erated from the a's and B8's by the generating function

1
8' = - opt + B(-200)72 By + B8 + By 5 (23)

B o= ng a.g , 8y = -u/2al (24)

this leads to the set

L= (uag) ¢ =ny(t + B)
% P (25)
oy ﬁ3 ’
canonical with respect to the Hamiltonian
H=-p?/ot? + ® (26)

One may attempt to apply the von Zeipel method in the way success-
fully used by Brouwer (1959), first eliminating short-periodic terms
and then proceeding to eliminate long-periodic terms. One then finds,
however, that the corresponding generating function S; » which ought to

be of the first order in the parameter

OEJA+J§‘ (27)



must satisfy
*
S, v
_—= }i‘fercth order in O (28)
381

One may alternatively eliminate short-periodic and long-periodic terms
similtaneously, but one then obtalns a Poisson term of the form

v'sinEBé in o, - o . Since V' has & secular part, such a result

would appear absurd, since the "constant" O which ought to have only

a small periodic variation, would then become infinite. These difficulties
are examples of the fa.ilﬁre of the von Zeipel method whenever the follow-

ing conditions both hold:

(1) the perturbation has a long-periodic part of the first
order in the perturbation parameter ©, and (2) the canonical variables

are such that the unperturbed Hamiltonian depends only on L.

The following set, however, 1s successful. If Jl’ jg,band j3 are
the action variables and if Vqs Vs and w3 are the correspoﬁding angle

variables, we define L, G, H, £, g, and h by

2mw.

217L=jl+32+j3sgna3 £ 1

]

21G = j, + Jqsen ag (29) &= 2n(w, - W) (30)

ori = 3, . b = 2m(w; - WysEn ag)
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where sgn 043 = + 1 respectively for a direct orbit or a retrograde orbit.

To verify that they are canonicel, note that

I4L + Gdg + BIh = Jjdw) + J,dw, + Iy | (31)

They were introduced by Izsak (1962) in his spplication of the suthor's

theory to the problem of the critical inclination.

It
Jik = 331/30‘1: > (i;k = 1)2)3) (32)

the B's are then given by

an(t + By) = 3p5(4 + &) + §pp 4

1

271,63 = 2qh + 313 L+ (323 + 2flsgn a3)(z+g)

The constant orbital elements in the perturbed problem then become the
constant parts a", e", and 118 of a,e, and 7}, , along with the initial-

values 4!

0 2 g(')', and h" of the secular parts of 4, g, and h.

0
The corresponding Hamiltonian F 1s given by

F=F (L G B+ F (3%)




where

Fo = -oq F, = -E (35)
and

rd - E o - . E

L= 3 elai?

é:: el > oF (36)

o8 g = - aG
= & h o= -
H dh h d3H

One cannot express the unperturbed Hamiltonian Fo = -y exactly as a
function of L, G, and H, but it 1s not necessary to do so. One needs

only the derivatives

3Fy 3 Fy 3y
Y Y N 3L - T2y

— :EL i 2 2n(vy - v,) (31)
Fy 3 F, ad
-é—ﬁ— = § -53-; 'SIT' = 21T(V25gna3 - V3)

On applying the von Zeipel method, one first carries through the

slmple but tedious elimination of the short-periodic terms. Proceed-
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ing to the long-periodic terms, one finds that the appropriate gen-

*
erating function Sl(' L',

%o
aG‘"

leading to

R "o 1
217( Vl v2)

G".

7

S-)(-
e

'

H, g') must satisfly

= (Fp) (38)
long-periodic,

= of(L', G", H)cos 2g’, (39)

where f 1s a certain function of L', G", and H. Since " - V' 1is

2
2

proportional to ].-51:12/(:1?"2 =~ 1-5cos I, this leads to the familiar

resonance denominator, whenever 0= J) + Jg #0 . 8ince o/ (ui-u§)= O(J’z) R

the long-periodic terms are accurate through order J..

2

After finding the above canonical variables as functions of time,

one easily converts their changes into changes of o, Y and &, or of

3

a, €, and I. On inserting the functions a(t), e(t), (%), £(t), g(t),

and h(t) into Eqs.(10), one then can find, by differential methods, the

changes in E, v, ¥, and X, and thus in the coordinates, that are produced

by the perturbation. It is not necessary to do a complete re-inversion

of (10.1) and (10.2).
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